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Abstract

A novel approach to obstacle detection using optical
flow without recovering range information has been de-
veloped. This method can be used for ground vehicles to
navigate through man-made roadways or natural outdoor
terrain or for air vehicles to land on known or unknown
terrain. A linear relationship, plotied as a line and called
a reference flow line, has been found. This reference flow
line can be used to detect discrete obstacles above or below
the reference terrain. Slopes of surface regions are also
computed. The approach is simple, fast, and robust be-
cause (1) the only required information is one component
of the optical flow, (2) each image line can be processed in
parallel, and (3) the error sources involved are reduced to
a minimum. An initial ezperiment using noisy synthetic
data is also included to demonstrate the applicability and
robustness of the method.

1 Introduction

Obstacle avoidance is one of the basic requirements in
visual navigation. For autonomous vehicle operation in
unstructured environments, obstacles must be detected
before any obstacle avoidance activity can be taken. Ob-
stacles are defined as any region in space where a vehicle
should not or cannot traverse, such as steep terrain, pro-
trusions (objects lying on top of the terrain), or depres-
sions (potholes, ruts, gullies in the terrain). The goal of
this paper is to develop a simple, fast, and robust method
for obstacle detection by ground vehicles or during air
vehicle landing. This would allow the ground vehicle to
navigate through man-made roadways or natural outdoor
terrain. This method would also allow the aircraft to land
on known or unknown terrain.

Most existing methods (e.g. [2] [3] [4] [5] [7] [9] [16]
[18]) perform obstacle detection based on range informa-
tion obtained either from active sensors or passive sen-
sors. Here, range is defined as the distance between the
sensor and the object in the world. However, we have

found that the geometry or shape of the object is some-
times more important than range for obstacle detection.
In fact, we show it is possible to detect obstacles without
direct range information.

One of the potential obstacle detection methods that
does not utilize range information involves optical flow.
Optical flow is the two dimensional motion observed in a
camera’s image. The optical flow results from the relative
motion between the camera and the objects in the envi-
ronment and represents the apparent motion of object
points through a sequence of images. For example, figure
1 shows an optical flow field resulting from the transla-
tional motion of a camera mounted on a vehicle traveling
on a planar road surface. The terrain that is close to the
camera will appear to flow faster than the terrain that
is distant. Optical flow, used by many biological crea-
tures for navigation [1], is a very powerful method for
obstacle detection. Herman and Hong [8] also described
how optical flow can be used to perform real-time nav-
igation, during both teleoperated low data rate driving
and autonomous driving. One of the main advantages of
using optical flow is that the ratio of distance to speed
(e.g., time-to-collision) can easily be obtained and used
for obstacle avoidance [10] [13]. Another advantage of us-
ing optical flow is that passive sensors, rather than active
sensors such as laser scanners, are used. This eliminates
radiation, reduces cost, and increases flexibility for many
applications.

In this paper, a new method of obstacle detection us-
ing optical flow without recovering range information is
developed. Discrete obstacles, as well as slopes of surface
regions, are computed. In the following sections, previous
work will be summarized first, then our method will be
described. Following that, the equations derived for the
method will be discussed and the results of our work will
be presented. Finally, the features and advantages of the
method will be summarized.



2 Previous Work

A number of obstacle detection methods have been de-
veloped in the past (e.g. [2] [3] [4] [5] [6) [7] [9] [11] [12]
{14] [15] [16] [17] [18]). Range information is often em-
ployed to solve the problem of obstacle detection. This
information may be obtained from active sensors (such
as laser scanners, radars, and ultrasonics), stereo, optical
flow, etc. A priori knowledge is also employed by most
existing methods. Such knowledge may include road mod-
els (or maps), coordinate transformations, sensor motion,
model optical flow fields, etc. Errors in a prioriknowledge
result in errors in the output. Even with perfect knowl-
edge of road models or model optical flow fields, errors in
the estimated data such as vehicle position or observed
optical flow still result in errors in the output.

The following are some typical examples in which op-
tical flow is used for obstacle detection. Nelson [11] de-
tected discrete obstacles in free space using flow field di-
vergence. Bhanu et al [2] presented an inertial sensor
integrated optical flow technique for motion analysis. In
their method, range information is extracted from optical
flow for obstacle detection. Hoff and Sklair [9] detected
landing hazards for a descending spacecraft. They devel-
oped an algorithm using range information retrieved from
optical flow with known camera motion. Enkelmann [6]
detected obstacles by evaluating the difference between
calculated optical flow and estimated model flow. The
estimated model requires knowledge about the focus of
expansion (FOE), the transformation matrix between the
camera and vehicle coordinate systems, and the camera
motion. In addition, this method works only with a cam-
era translating on a planar surface. Sridhar et al [16] at
NASA Ames Research Center investigated the methodol-
ogy for obstacle detection for rotorcraft low altitude flight.
The obstacle detection problem is posed as the problem
of finding range to all objects in the field of view. Range
information is obtained by the use of optical flow. In ad-
dition to optical flow technology, stereo and integrated
vision/active range sensors for obstacle detection are also
under development in their research.

3 Method

As shown in the previous section, most existing tech-
nology for obstacle detection employs range information
extracted from optical flow, stereo, or active range sen-
sors. In addition, most obstacle detection technologies
only deal with discrete obstacles (e.g., [5] [6] [11] [14]
[15] [17]), while slope, a useful feature for determining
traversability, is not calculated. In this paper, a new
method of obstacle detection using optical flow without

recovering range information is developed. The technique
includes detection of discrete obstacles and calculation of
terrain slope. This method can be used for ground vehi-
cles navigating in man-made roadways or natural outdoor
terrain or for air vehicles landing in known or unknown
terrain.

For translational motion, if a line in space is projected
into the image, then the component of optical flow per-
pendicular to this image line, as a function of position
along the line, will result in a linear relationship. In fig-
ure 2a, if the line AB in space is projected into 1mage
line ab, the component § of optical flow (extracted in a
dlrectlon perpendicular to this image line) vs. image po-
sition z is a line (ﬁgure 2b). In figure 2a, the y coordinate
of image line ab is y* and the coordinates of the i image
points a and b are (x,, y*) and (zn,y*), respectively. The
coordinates of the two points F4 and Fp in figure 2b are
(20, ¥o) and (%n,Yn), respectively. The line F4Fg in a
plot of y vs. x is called a reference flow line. A proof
of this property is found in section 4. The reference flow
line will have enough information to indicate
(1) discontinuities in the flow field along the line and
(2) protrusions or depressions of 3-D objects relative to
the line.

To apply the above properties to obstacle detection,
three steps are involved.
Setp 1: Estimation of the reference flow line.
This line can be obtained from the observed optical flow
corresponding to regions on the ground surface near the
vehicle. In principle, only two points are required to es-
timate the reference flow line.
Step 2: Computation of the difference.
The difference between the reference flow line and the
observed flow corresponding to objects projected into the
image line is computed. Note that the “objects” here can
be discrete obstacles or smooth or uneven terrain in the
visible environment.
Step 3: Identification of terrain characteristics.
The computed difference in step 2 is used to identify the
terrain characteristics. If the difference is positive, the
observed point is considered to be a protrusion relative
to the reference line (see figure 3). If the difference is
negative, the observed point is regarded as a depression
relative to the reference line.

Slopes of surface regions can also be computed. The
formulas for calculating slope are derived in section 4.
Many lines can be chosen in the image, to cover the full
terrain ahead of the vehicle, and they can all be processed
in parallel. An extension of this approach to general mo-
tion (translation and rotation) has also been developed
[19].

The method has several features:



(1) Simple - Only one component of the optical flow
is needed. In principle, normal flow, the component of
the optical flow along the local gradient direction, can be
used. The only assumption made is that the motion is a
pure translation. Information such as a road or terrain
model, specific knowledge of vehicle (or camera ) motion,
or knowledge of the coordinate transformation between
the camera and the ground is not required. The feature
used to detect discrete obstacles is simple - a straight line.
(2) Fast - The method is simple; therefore computation
is fast. Each image line can be processed in parallel.

(3) Robust - Since the only required information is one
component of the optical flow, the error sources involved
are reduced to a minimum. The reference flow line is
estimated from the observed data so that the reference
and observed flows are from the same error source. This
avoids multiple error sources, such as one error source
from observed data and another from model data.

4 Derivation

In this section, it is proved that for an image line aris-
ing from a line in space, the relationship between one
component of the optical flow and the image position is
linear when the motion of the objects relative to the cam-
era is translational. Following that the equations for cal-
culation of terrain slope are introduced.

A reference flow line
Consider the line AB in space which is projected into the
image line ab. In figure 4, a coordinate frame ¢ attached
to the camera is chosen as follows:
(1) Let the camera focal point be the origin O..
(2) Let the optical axis be the Z, axis.
(3) Choose X, to be parallel to the image line ab.
(4) Choose Y, by the right hand rule.
A coordinate frame b is then affixed to the line AB as
follows:
(1) Let the origin Oy be the point lying on the extended
line AB with the shortest distance from the point O..
(2) Let the Z; axis be along the line AB.
(3) Choose X} and Y; by the right hand rule.
A point P in the scene can be transformed from frame b
to frame c as follows:

X, X
Ye | _ 4 Y,
Zc = Hb * Zb (1)
1 1

where (X, Y., Z.) and (X3, Y3, Z) are the coordinates
of point P in frames ¢ and b, respectively, and
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represents a 4x4 transform matrix from frame b to frame
¢. Note that, for each instance of time, Hf is constant for
all points in the scene. From the pinhole camera model,
if we let the focal length be unity, the image position z is

r=— (3)

The equations for optical flow due to translational motion
are as follows:

= Z—lc-(—Tx + .’cTz) (4)

i = 5 (~Ty +4Ty) )

where (&, §) are the components of optical flow, Z, is
the depth of the object relative to the camera, (z,y) are
the components of the image position, and (Tx, Ty, Tz)
is the translational motion of the object relative to the
camera. Note that, for each instance of time, (Tx, Ty,
Tz) are constants for all points lying on a rigid object.
As defined earlier, line AB coincides with the Z; axis,
therefore any points lying on line AB always have

X, =Y, =0 (6)

With equations (1)(2)(3) and (6), the following linear re-
lationship can be obtained from equation (5) for all image
points lying on line ab that arise from points in the scene
lying on line AB:

y=a1+arz (M)
where

LK
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Equation (7) represents a reference flow line corre-
sponding to one reference line in space. For each time,
the values a;, a3, and a3 are constants for all points on
the reference line. Note that the reference flow line can
be estimated from two points in principle (say, (z1, #1)
and (z2, 2)). This means that specific knowledge of the
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transformation matrix and camera motion is not required.

Calculation of terrain slope

The terrain slope can be obtained from the optical flow
without recovering range information. In figure 5a, the
slope tan & denotes the observed terrain Q@5 relative to
the reference line Py P;. In figure 5b, the slopes tan#,
and tan #; denote the reference line P, P, and the terrain
Q1Q: relative to the line O.E. Here E is an image point
with the coordinate (0,y). The components in the camera
frame of the vectors P\ P; and O.E are (zp2Zpa-p1Zp1,
Y(Zp2-Zp1), Zpa-Zp1) and (0, y, 1), respectively. With
the components of the two vectors, the slope tan#é; for
the line P, P, relative to O.E can be found as

(zp2Kp — 2p1)
tanf; = 9
(\/y2 + I(Kp - 1))
where 7 .
Ky=2R2= %L (10)

B Zpl B yp2
and gp,, Yp, denote the y components of the optical flow
at image positions z,, and z,,, respectively.

Similarily, the slope tan#; for the line Q1@ relative to
O.E can be found as

tand; = (22K — 201) (11)
(V¥ + 1K, - 1))
where 7 .
Ky=22 =Yt 12
q qu yq2 ( )

and gq,, ¥y, denote the y components of the optical flow
at image positions z,, and r,,, respectively.
Finally, the terrain slope tan a can be obtained as

tana = tanf; —tan 6, (13)

5 Experiments and results

Two initial experiments using noisy synthetic data
have been performed. The camera is mounted on the top
of the vehicle 2 m above the ground (see figures 6 and
7). The first experiment involved detecting a bump a dis-
tance of 5 m from the head of the vehicle and a height of
0.3 m above the smooth terrain (see figure 6). The second
experiment involved detecting a pothole with a depth of
0.6 m in the terrain as well as a ramp (see figure 7). The
pothole was 6 m away from the vehicle and the beginning
of the ramp was 12 m from the vehicle. The ramp was
tested with various slope angles (92, 18°, and 27°).

In the first experiment, three kinds of noise were added
to the optical flow field: 0% , 5%, and 10%. The results

are presented in figures 8a, 8b, and 8c. The region above
the horizontal line results from a protrusion above the ter-
rain. The gap in the graphs at the end of the protrusion
is due to occlusion. In the second experiment, for each
slope angle (9°, 18°, and 27°), there were two.kinds of
noise (0% and 10%) added to the optical flow field. The
results are shown in figures 9a through 9f. The region
below the horizontal line results from a depression in the
terrain. The gap in the graphs at the beginning of the de-
pression is due to occlusion. The region with a smoothly
increasing value relative to the horizontal line denotes a
ramp. The data points collected from the region were fit
by a line. The slope of the line represented the slope of
the ramp. The actual and calculated slopes of the ramp
are presented in table 1 (the case without noise) and ta-
ble 2 (the case with 10 % noise). The performance of this
method depends on the quality of the input data. For
example, this method may not work if the uncertainty in
the range due to the optical flow value is larger than the
size of the bump or pothole.

6 Conclusions

In this paper, a novel method of obstacle detection
has been developed using optical flow without recover-
ing range information. The method allows both detec-
tion of discrete obstacles and calculation of terrain slope.
This method can be used for ground vehicles navigating
in man-made roadways or natural outdoor terrain or for
air vehicles landing in known or unknown terrain. The
method has several advantages:

(1) Simple - Only one component of the optical flow is
required. Knowledge about the road or terrain model, ve-
hicle (or camera) velocity, or coordinate transformations
is not needed (other than the assumption of translational
motion).

(2) Fast - The amount of computation is small and each
image line can be processed in parallel.

(3) Robust - Few error sources are involved.

The initial experiments included in the paper suggest that
the approach using the reference flow line is effective and
robust.
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Actual slope angles 9° 18° 27°
Estimated slope angles | 9.29° | 18.47° | 27.52°

Table 1 Results of ramp detection with 0 % noise

Actual slope angles 9° 18° 27°
Estimated slope angles | 8.27° | 15.9° [ 23.13°

Table 2 Results of ramp detection with 10 % noise



